

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Normal Coordinates Analysis of the Hexamminochromium (III) Ion. A Simplified $M(NX)_6$ Model

Roberto Acevedo^a; Guillermo Díaz^b

^a Department of Chemical Engineering, Faculty of Physical and Mathematical Sciences. University of Chile, Santiago, CHILE ^b Academia Superior de Ciencias Pedagógicas de Valparaíso., Valparaíso, CHILE

To cite this Article Acevedo, Roberto and Díaz, Guillermo(1983) 'Normal Coordinates Analysis of the Hexamminochromium (III) Ion. A Simplified $M(NX)_6$ Model', *Spectroscopy Letters*, 16: 3, 199 — 206

To link to this Article: DOI: 10.1080/00387018308062335

URL: <http://dx.doi.org/10.1080/00387018308062335>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NORMAL COORDINATES ANALYSIS OF THE HEXAMMINOCHROMIUM
(III) ION. A SIMPLIFIED $M(NX)_6$ MODEL

Keywords: Molecular vibrations, Force constants,
 $Cr(NH_3)_6^{3+}$, O_h .

by Roberto Acevedo.

Department of Chemical Engineering. Faculty of Physical
and Mathematical Sciences. University of Chile.
Tupper 2069. Casilla 2777. Santiago. CHILE.

Guillermo Díaz.

Academia Superior de Ciencias Pedagógicas de Valparaíso.
Casilla 34-V. Valparaíso. CHILE.

ABSTRACT

A normal coordinates analysis for the hexamminochromium (III) ion, in octahedral symmetry has been undertaken. A simplified $M(NX)_6$ model has been adopted, since many of the gerade vibrational frequencies are still unknown. It is found that a very simple and consistent force field is able to reproduce the observed vibrational frequencies as well as gives a reasonable set of force constant for this complex ion. This calculation supports the assignments, made in literature by several workers.

INTRODUCTION

Several spectroscopic studies on the spectra of Chromium (III) amminecomplexes have been carried out by several workers¹⁻⁵.

The most extensive study, in the case of the hexamminochromium (III) ion in cubic lattices, has been undertaken by Flint and Greenough⁷.

They recorded the low temperature vibronic spectra associated with the $\Gamma_8(2\epsilon_g) \rightarrow \Gamma_8(4\alpha_{2g})$ phosphorescence and were able to identify and assign many of the odd parity vibrational frequencies, however many of the gerade ones are still unknown.

Nakawa et al⁸ performed a normal coordinates analysis for this complex ion, based upon the $\tau_{14}(7 \times 7)$ block, by utilizing a modified Urey-Bradley force field and including all the ligand atoms. Schmidt et al⁹ reported the general valence force field Cr - N stretching force constant, evaluated from Raman and IR data by employing a point mass model and metal isotope.

Here we shall undertake a normal coordinates analysis of the $\text{Cr}(\text{NH}_3)_6^{3+}$ ion, by adopting a linear ligator approximation for the NH_3 - ligands. A general modified symmetry valence force field (GMSVFF) shall be utilized in this calculation.

A $\text{M}(\text{NX})_6$ model for the twenty five atoms system shall be employed, where X represents an effective mass corresponding to three times the mass of a hydrogen atom and located at a distance of 2.38 Å from the central metal atom. The Cr - N bond distance has been taken to be 2.00 Å. The effective mass X has been considered to be linearly connected to Nitrogen.

Next the GF - method of Wilson et al¹⁰ is employed to derive the symmetrical and internal force constants of this complex ion.

MOLECULAR MODEL AND VIBRATIONAL ANALYSIS

The thirty three normal modes of vibration associated with a $M(NX)_6$ molecular system are distributed among the irreducible representations of the octahedral point molecular group as follows:

$$\Gamma_{\text{vib}} = 2 \alpha_{1g}(R) + 2 \varepsilon_g(R) + \tau_{1g}(R) + 4 \tau_{1u}(\text{IR}) + 2 \tau_{2g}(R) + 2 \tau_{2u}(R)$$

Jones et al¹¹ worked out the symmetry coordinates which transform under these representations.

The relationships corresponding to a GMSVFF are given in table I.

Observe that we have taken $F_{ij} = 0$ for $i \neq j$. Next, to build up an initial symmetry adapted F matrix, we have taken $f_R = 1.66$ as reported by Schmidt et al⁹. The other skeletal force constants have been transferred from the calculated ones corresponding to systems of the type $\text{Co}(\text{NH}_3)_5 \text{L}^{2+}$, where L is a halide anion¹².

The transferred force constants are the following ones:

$f_\beta = 0.18$, $f_\alpha = 0.23$, $f_{RR}^C = 0.07$, $f_{RR}^t = 0.49$, $f_{\beta\beta 1} = 0.00$, $f_{\beta\beta 2} = 0.00$ and $f_{\alpha\alpha} = 0.03$, in units of mdyne/ \AA .

The diagonal F matrix elements F_{ii} ($i = 2, 4, 6$) involving the N-H stretch coordinate, ie F_{22} (α_{1g}), F_{44} (ε_g) and F_{66} (τ_{1u}) were calculated by means of the relationship:

$$F_{ii} = (\lambda_i / G_{ii}), \text{ where } \lambda_i = 0.5888851 (v_i / 1000)^2$$

According to the model employed in this calculation, the actual value corresponding to the N-H stretching force constant f_D , should be 1/3 of the calculated one by using the GF-method of Wilson et al¹⁰.

T A B L E I

Internal and symmetry valence force constants for $M(NX)_6$ type of molecules

Internal valence force constants:

Diagonal: f_R ; f_D ; f_α ; f_β

Interaction: f_{DD} , f_{RR} ($c = cis$, $t = trans$)

$f_{\beta\beta 1}$ (opposed), $f_{\beta\beta 2}$ (perpendicular)

$f_{\alpha\alpha 1}$ (perpendicular with two atoms in common)

$f_{\alpha\alpha 2}$ (opposed with two atoms in common)

$f_{\alpha\alpha 3}$ (with one atom in common).

Symmetry valence force constants:

$$F_{11} = f_R + 4f_{RR}^c + f_{RR}^t \quad F_{1010} = f_\beta - 2f_{\beta\beta 1} + f_{\beta\beta 2}$$

$$F_{22} = f_D + 4f_{DD}^c + f_{DD}^t \quad F_{1111} = f_\alpha - 2f_{\alpha\alpha 1} + f_{\alpha\alpha 2}$$

$$F_{33} = f_R - 2f_{RR}^c + f_{RR}^t \quad F_{1212} = f_\beta - f_{\beta\beta 1} - 2f_{\beta\beta 2}$$

$$F_{44} = f_D - 2f_{DD}^c + f_{DD}^t \quad F_{1313} = f_\alpha - 2f_{\alpha\alpha 1} + 2f_{\alpha\alpha 2}$$

$$F_{55} = f_\beta + 2f_{\beta\beta 1} + 4f_{\beta\beta 2} \quad \tau_{1g} \quad \tau_{2g}$$

$$F_{66} = f_D - f_{DD}^t \quad \tau_{1u}$$

$$F_{77} = f_R - f_{RR}^t$$

$$F_{88} = f_\beta - f_{\beta\beta 1} + 2f_{\beta\beta 2}$$

$$F_{99} = f_\alpha + 2f_{\alpha\alpha 1} + f_{\alpha\alpha 2} - f_{\alpha\alpha 3}$$

The initial force constants were slightly modified by a trial and error method, see Table 2. The calculated vibrational frequencies derived from this simplified force field are displayed in Table 3. The calculated values agree fairly well with the observed vibrational frequencies reported by Flint et al⁷.

Table 3 also include the calculated PED of these frequencies, supporting the assignments made previously by Flint and coworkers⁷.

DISCUSSION

The calculated force constant f_D (N-H stretching force constant) is smaller in the complex ion than in NH_3 system¹⁴. The weakening of the N-H bond is due to the coordination Cr-N bond.

Regarding the molecular framework, the stretching force constant f_R , does not change with respect to the value given by Schmidt et al⁹. The smaller value of f_R (1.66) compared with the stretching force constant $f_{\text{Co-N}}$ (1.72) reported in Ref. 12, shows that the degree of covalency of the M-N bond decreases from Co(III) to Cr(III), as it has been pointed out by Nakagawa et al⁸.

T A B L E 2

Internal valence force constants for $[\text{Cr}(\text{NH}_3)_6]^{+3}$ ion
(mdyne/ \AA)

$f_K = 1.660$	$f_{\alpha\alpha 1} = 0.012$	$f_{RR}^C = 0.050$	$f_{\alpha\alpha 2} = 0.010$
$f_{RR}^t = 0.460$	$f_{\alpha\alpha 3} = 0.005$	$f_\beta = 0.145$	$f_D = 5.200$
$f_{\beta\beta 1} = 0.020$	$f_{DD}^C = 0.0$	$f_{\beta\beta 2} = 0.014$	$f_{DD}^t = 0.010$
$f_\alpha = 0.250$			

TABLE 3

Calculated vibrational frequencies (cm^{-1}) and potential energy distribution (PED)

Species	Calculated	Experimental ^a	PED ^c
α_{1g}	3267.0	-	$\nu(\text{NH})$ 99%
	509.7	-	$\nu(\text{CrN})$ 99%
ϵ_g	3279.7	-	$\nu(\text{NH})$ 99%
	424.0	425.0	$\nu(\text{CrN})$ 99%
τ_{1g}	956.4	-	$\rho(\text{NH}_3)$ 98%
	3277.7	3270.0	$\nu(\text{NH})$ 99%
τ_{1u}	742.5	745.0	$\rho(\text{NH}_3)$ 93%
	477.9	473.0	$\nu(\text{CrN})$ 78% + $\delta(\text{NCrN})$ 18%
	260.7	261.0	$\delta(\text{NCrN})$ 76% + $\nu(\text{CrN})$ 21%
τ_{2g}	661.5	-	$\rho(\text{NH}_3)$ 91%
	281.2	270.0	$\delta(\text{NCrN})$ 91%
τ_{2u}	677.4	670.0	$\rho(\text{NH}_3)$ 96%
	207.6	203.0	$\delta(\text{NCrN})$ 95%

^aFrom Reference 7. $|100 F_{ii} L_{ik}^2 \lambda_k|^c$; terms below 15% are omitted.

The constants f_{α} y f_{RR}^t are just slightly different from the values given in reference 12, so it may be possible to transfer them to an initial force field to describe similar complex ions.

We also find that the NH_3 -rocking force constant f_{β} , decreases approximately a 20% with respect to the corresponding constant in the $\text{Co}(\text{III})$ -ammine complex ion¹². This fact suggests that this force constant could also be considered as a measurement of the degree of covalency for this type of complexes.

Finally, the calculated PED shows that in general there are no coupling among the frequencies, except those

concerning the Cr-N stretching (477.9 cm^{-1}) and the NCrN bending (261 cm^{-1}), however this coupling is not important.

CONCLUSION

The consistency of the internal force constants and the agreement between the observed frequencies and the calculated ones, by using a very simple potential field, indicates that the molecular model chosen in this work could be useful to interpret the vibronic spectra of this type of complex ions.

REFERENCES

- 1.- M. Kobayashi and J. Fujita, *J. Chem. Phys.* 23, 1354 (1955).
- 2.- G. Blyholder and S. Vergez, *J. Phys. Chem.* 67, 2149 (1963).
- 3.- N. Tanaka, M. Kamada, J. Fujita and E. Kyuno, *Bull. Chem. Soc. Japan*, 37, 222 (1964).
- 4.- A. Muller and E.J. Baran, *J. Mol. Struct.* 15, 203 (1966).
- 5.- A. Muller, I. Boschen and E.J. Baran, *Monatshefte fur Chemie*, 104, 821 (1973).
- 6.- H. Siebert and H.H. Eysel, *J. Mol. Struct.* 4, 29 (1969).
- 7.- C.D. Fint and P. Greenough, *J. Chem. Soc. Faraday Transactions II*, 29, 897 (1972).
- 8.- I. Nakagawa and T. Shimanouchi, *Spectrochim. Acta*, 22, 759 (1966).

- 9.- K.H. Schmidt and A. Muller, *Inorg. Chem.* 14, 2183 (1975).
- 10.- E.B. Wilson Jr., J.C. Decius and P.C. Cross, *Molecular Vibrations*, McGraw Hill Co. Inc., New York 1955.
- 11.- L.H. Jones, R.S. McDowell and M. Godblatt, *Inorg. Chem.* 8, 2349 (1969).
- 12.- Guillermo Diaz, Master Dissertation, Universidad de Chile, 1982.
- 13.- Y. Morino and K. Kuchitzu, *J. Chem. Phys.* 20, 1809 (1952).
- 14.- S.J. Cyvin, B.N. Cyvin, R. Andreassen and A. Muller, *J. Mol. Struct.* 25, 141 (1975).

Received: August 17, 1982

Accepted: December 22, 1982